механические устройства, облегчающие труд и повышающие его производительность. Машины могут быть разной степени сложности – от простой одноколесной тачки до лифтов, автомобилей, печатных, текстильных, вычислительных машин. Энергетические машины преобразуют один вид энергии в другой. Например, генераторы гидроэлектростанции преобразуют механическую энергию падающей воды в электрическую энергию. Двигатель внутреннего сгорания преобразует химическую энергию бензина в тепловую, а затем в механическую энергию движения автомобиля (см. также ЭЛЕКТРОМАШИННЫЕ ГЕНЕРАТОРЫ И ЭЛЕКТРОДВИГАТЕЛИ; ДВИГАТЕЛЬ ТЕПЛОВОЙ; ТУРБИНА). Так называемые рабочие машины преобразуют свойства или состояние материалов (металлорежущие станки, транспортные машины) либо информацию (вычислительные машины).

Машины состоят из механизмов (двигательного, передаточного и исполнительного) – многозвенных устройств, передающих и преобразующих силу и движение. Простой механизм, называемый полиспастом (см . БЛОКИ И ПОЛИСПАСТЫ), увеличивает силу, приложенную к грузу, и за счет этого позволяет вручную поднимать тяжелые предметы. Другие механизмы облегчают работу, увеличивая скорость. Так, велосипедная цепь, входящая в зацепление со звездочкой, преобразует медленное вращение педалей в быстрое вращение заднего колеса. Однако механизмы, увеличивающие скорость, делают это за счет уменьшения силы, а увеличивающие силу – за счет уменьшения скорости. Увеличить одновременно и скорость и силу невозможно. Механизмы могут также просто изменять направление силы. Пример – блок на конце флагштока: чтобы поднять флаг, тянут за шнур вниз. Изменение направления может сочетаться с увеличением силы или скорости. Так, тяжелый груз можно приподнять, нажимая на рычаг вниз.

Попов С.А. Курсовое проектирование по теории механизмов и машин . М., 1986

Раздел:
Короткий путь http://bibt.ru

СВЕДЕНИЯ О МЕХАНИЗМАХ, МАШИНАХ И ДЕТАЛЯХ МАШИН

§ 26. ПОНЯТИЕ О МАШИНЕ И МЕХАНИЗМЕ.

Машина - сочетание механизмов, осуществляющих определенные целесообразные движения для выполнения определенной работы или преобразования энергии. Машины, преобразующие один вид энергии в другой, называют двигателями, например, электрические, гидравлические, пневматические. Машины, преобразующие размеры, форму, свойства материала называют машинами-орудиями или рабочими машинами. К ним относят металлорежущие, деревообрабатывающие, текстильные станки, транспортные устройства и т. д.

Круглошлифовальный станок выполняет полезную работу, шлифуя детали. Электродвигатели дают энергию, обеспечивающую вращение шлифовального круга, прямолинейное движение стола с деталью.

Каждая машина состоит из совокупности механизмов.

Механизм - совокупность подвижно соединенных между собой тел (звеньев), совершающих заранее заданные движения под действием приложенных сил.

В шлифовальных станках широко распространены механизмы, передающие движения: ременные, зубчатые, червячные и др.

Откройте крышку пружинных часов: сколько там различных колесиков, рычагов и других деталей, образующих сложную систему! Все детали совершают определенные, взаимосвязанные движения, в результате которых энергия, накопленная пружиной, преобразуется в движение стрелок. Такая система деталей называется часовым механизмом .

Существует множество разновидностей механизмов, но все они имеют одно назначение - преобразовывать движение одних твердых тел в движение других твердых тел. Если в этом преобразовании участвует жидкость, механизм называется гидравлическим, если воздух - пневматическим.

Простейший механизм - передаточный - передает движение электрического двигателя водяному насосу . Рабочее колесо насоса должно вращаться с той же частотой и в том же направлении, что и вал двигателя. В этом случае достаточно поставить насос рядом с двигателем и соединить их валы между собой. Это делают при помощи муфт.

Если в процессе работы необходимо разъединить машины на ходу, применяются более сложные соединения - гидравлические, фрикционные или магнитные муфты. В первом случае передача вращения происходит за счет сил жидкостного сцепления, во втором - за счет силы трения, а в третьем - за счет силы магнитного притяжения, возникающего при протекании электрического тока по обмоткам муфты. Иногда соединяемые части машин находятся на некотором расстоянии друг от друга и оси валов не совпадают. В этом случае используют вал с карданными шарнирами (карданный вал) или гибкий вал - трос.

Следующая группа устройств для передачи вращательного движения - ременные и цепные передачи. В отличие от предыдущих они позволяют получать различные частоты вращения. Частоты вращения ведущего и ведомого валов в таких передачах связаны простой зависимостью:

частота вращения ведомого вала

частота вращения ведущего вала

диаметр ведущего шкива

диаметр ведомого шкива

Иными словами, если нужно, чтобы ведомый вал вращался медленнее ведущего, следует поставить на нем шкив большего диаметра, чем на ведущем, и наоборот. Отношение диаметра ведущего шкива к диаметру ведомого называется передаточным отношением. (Для цепной передачи диаметры шкивов в формуле надо заменить числом зубьев ведущей и ведомой звездочек.) В некоторых машинах цепные передачи служат еще и частью рабочего органа. Например, ковши землечерпательного снаряда и зубья врубовой машины крепятся непосредственно на цепи и перемещаются вместе с нею.

Хотя ременные передачи наиболее просты, в машиностроении более широко распространены зубчатые передачи. Еле различимые глазом зубчатые колесики отсчитывают время в наручных часах, а гигантские зубчатые колеса диаметром в несколько метров поднимают огромные щиты в шлюзах, поворачивают стрелы экскаваторов и подъемных кранов.

У обычных зубчатых передач есть одна особенность - зубчатое колесо не может иметь меньше 6 зубьев, иначе не будет соблюдено условие плавного и надежного зацепления. Отсюда и произошло слово «шестерни», которым часто в обиходе называют зубчатые колеса. Минимальное число зубьев - 6, а максимальное - сколько угодно. Ведь длинная зубчатая рейка - это тоже своего рода зубчатое колесо с бесконечно большим диаметром.

В тех случаях, когда для изменения частоты вращения оказывается недостаточным передаточное отношение одной пары колес, применяют несколько пар зубчатых колес. Такой механизм, заключенный в отдельный корпус, называют редуктором .

С изменяемым передаточным отношением называют коробками скоростей или коробками передач. Они передают движение, например, от двигателя автомобиля к его колесам, изменяя при этом частоту их вращения.

Как бы хорошо ни были изготовлены зубья цилиндрических зубчатых колес, при их зацеплении неизбежно происходят удары, отчего они быстро изнашиваются. Поэтому в передачах, испытывающих большие нагрузки, применяют косозубые и шевронные зубчатые колеса. Зацепление зубьев у таких колес происходит плавно, без ударов. Конические зубчатые передачи передают вращение между валами, расположенными под углом 90°.

Еще один вид передач вращательного движения - червячная передача .

Червячные редукторы могут иметь весьма большие передаточные отношения. Червячная передача передает вращение между скрещивающимися валами.

Рабочие органы и вспомогательные устройства многих машин совершают возвратно-поступательное движение, а вал двигателя - вращательное. Поэтому существуют передачи, преобразующие вращательное движение в возвратно-поступательное движение, и наоборот.

Таковы основные виды механических передач, применяемые в современных машинах . Но не всегда механические передачи отвечают требованиям современной техники.

Так, коробка скоростей , состоящая из зубчатых передач, позволяет изменять частоту вращения только ступенями. А вот гидравлическая коробка скоростей обеспечивает плавное изменение частоты вращения в широких пределах. Она состоит из насоса и турбины. Насос закреплен на ведущем валу, а турбина - на ведомом. При работе насос подает масло на лопатки турбины и заставляет ее вращаться. Если все масло из насоса идет на турбину, она вращается с максимальной частотой. Но вот мы приоткрыли кран. Часть масла пошла в обход турбины, и частота ее вращения уменьшилась. Чем больше открыт кран, тем медленнее вращается турбина. А если все масло будет проходить мимо турбины, она совсем остановится. Следовательно, регулируя подачу масла, можно плавно изменять частоту вращения турбины. Такие гидравлические передачи применяются на металлорежущих станках, в автомобилях.

В этом разделе представлены простейшие механизмы машин и отражены принципы и условия передачи движения в них, характеристики статики, кинематики и динамики цепей привода, а также надежности деталей и узлов по критериям прочности, усталости, износостойкости. Помимо этого уделено внимание элементам теории управления применительно к системам управления строительными машинами, рассмотрены основы теории их рабочих процессов тяговой динамики и производительности. Сформированные здесь сведения составляют основы прикладной механики машин и являются ключом к пониманию принципов их действия и эксплуатации.

Механизмы машин

Твёрдое тело, входящее в состав механизма, называют звеном. В каждом механизме имеется неподвижное звено, или условно принимаемое за такое - стойка, а также подвижные звенья. В механизме выделяют одно входное звено, получающее движение от двигателя непосредственно или с помощью механизмов, и одно выходное звено, реализующее требуемое движение для дальнейшей передачи его рабочему органу или движителю машины.

Подвижное соединение двух соприкасающихся звеньев, допускающих относительное движение, называют кинематической парой. Их разделяют по характеру звеньев (плоские, цилиндрические, сферические и др.), траектории взаимного движения (поступательная, вращательная, винтовая) и числу степеней свободы (одно-, двух-, трёх-, четырёх- и пятиподвижные) (рис.2.1).

Рис. 2.1. Типовые кинематические пары

Все кинематические пары по характеру контакта их звеньев разделяют на низшие и высшие. В нижних парах, реализующих требуемое относительное движение звеньев, их контакт происходит по поверхности при постоянном соприкосновении. К таким парам относят: вращательную, поступательную, винтовую, цилиндрическую, сферическую и плоскостную. В высших парах (зацепления) требуемое движение звеньев может быть получено только при соприкосновении ее элементов по линиям и в точках. Механизмы с такими парами обладают практически неограниченными возможностями для воспроизведения любого закона движения. Система звеньев, соединенная кинематическими парами, называют кинематической цепью, которые разделяют на замкнутые и незамкнутые.

Формирование кинематических пар и механизмов в целом осуществляется путем сборки отдельных звеньев - деталей. С целью обеспечения взаимозаменяемости деталей, возможности их сборки в узлы без дополнительных подгонок, они изготовляются с определенными, заранее заданными отклонениями от номинального размера. Это обусловлено тем, что при изготовлении даже одной детали невозможно добиться того, чтобы её размеры были абсолютно верны. Разность между наибольшими и наименьшими предельными размерами называется допуском. В зависимости от требований, предъявляемых к соединяемым деталям, задаются различные величины допусков, характеризующие класс точности. Всего установлено 19 квалитетов. В строительно-дорожном машиностроении наиболее применяемыми являются 6÷8й (IT 6÷8). Характер соединения деталей называют посадкой, которая определяется разностью размеров деталей соединения: отверстия и вала. Посадки подразделяют на три группы: с зазором, с натягом и переходные, при которых возможно получение как зазоров, так и натягов в зависимости от полей допусков сопрягаемых деталей. Указанные выше виды посадок реализуются технологическими процессами сборки, осуществляемыми с применением соединений: шпоночных, шлицевых, клеммовых, клиновых и других, позволяющих обеспечить один из видов соединений детали с валом: свободное при вращении, подвижное без вращения и глухое (жесткое).